A Secret Enriched Visual Cryptography Feng Liu, Weiqi Yan, Peng Li and Chuankun Wu

February 4, 2021

Content

- Background
- Preliminaries
- Our work

Background

- Visual Cryptography (VC) has the advantage of "stacking to see", but suffers from large pixel expansion and low information rate.
- Aim of this work: How to let the VC scheme carry more secrets?
- Our approach: Embed the output of a private-key system into the input random numbers of VC.

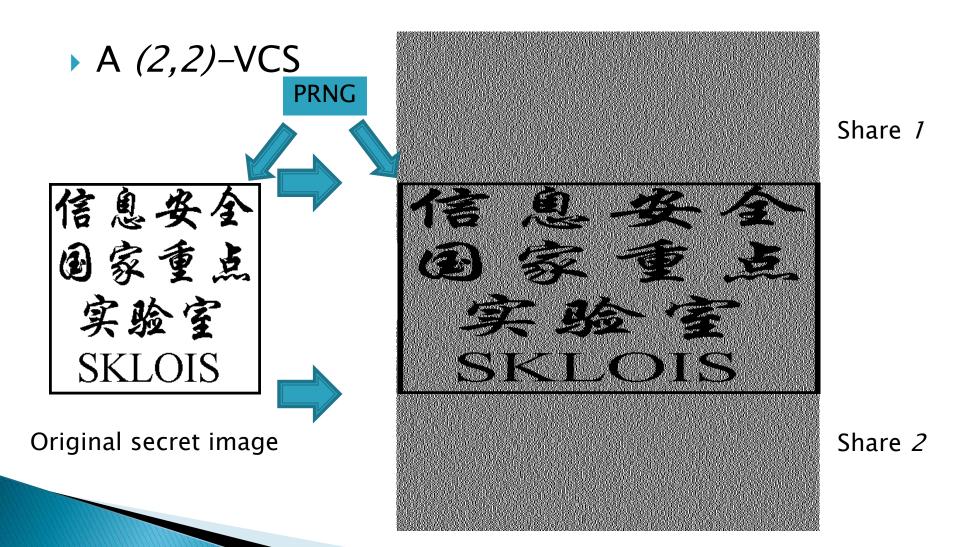
Background

Preliminaries

• Our work

February 4, 2021

Overall view of a (2,2)-VCS



Formal Def. of (k, n)- VCS

- Definition 1. Let k, n, m, l and h be non-negative integers satisfying 2≤ k≤n and 0 ≤ l < h ≤m. The two sets of n * m Boolean matrices (C₀, C₁) constitute a (k, n)-VCS if the following properties are satisfied:
- ▶ 1. (Contrast) For any $s \in C_0$, the OR of any k out of the n rows of s, is a vector v that, satisfies w(v) ≤ I.
- ▶ 2. (Contrast) For any $s \in C_1$, the OR of any k out of the n rows of s, is a vector v that, satisfies w(v)≥h.
- 3. (Security) For any i₁ < i₂ <... < i_t in {1, 2,..., n} with t < k, the two collections of t * m matrices F₀ and F₁ obtained by restricting each n * m matrix in C₀ and C₁ to rows i₁, i₂,...,i_t, are indistinguishable in the sense that they contain the same matrices with the same frequencies.

Shamir's (t, n)-PSSS

• $f(x) = (a_0 + a_1x + ... + a_{t-1}x^{t-1}) \mod p$, where a_0 is the secret from GF(p) and $a_{1,...}$, a_{t-1} are randomly drawn element from GF(p).

- Encoding: The n shares can be calculated by f(1), f(2), ..., f(n).
- Decoding: f(x) can be reconstructed from any t of n shares, and hence the secret f(0) can be computed.

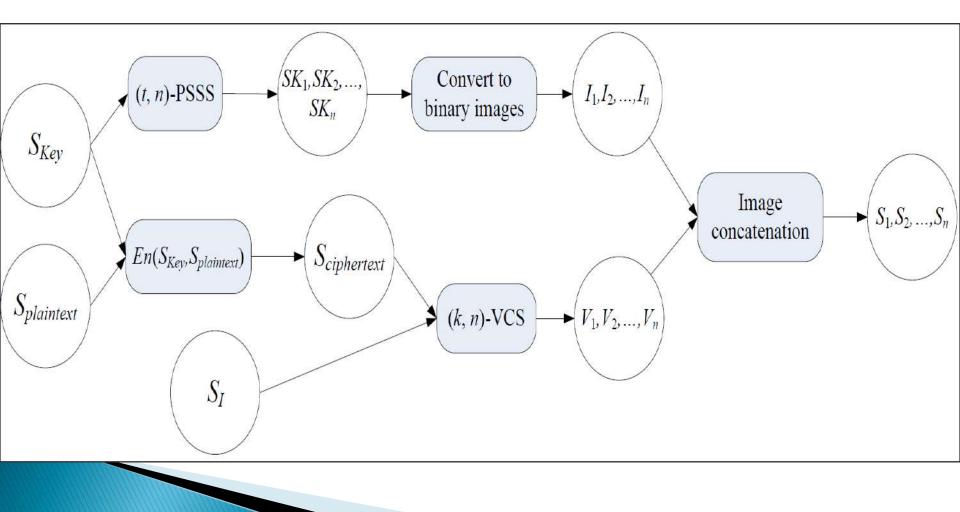
- Background
- Preliminaries
- Our work

February 4, 2021

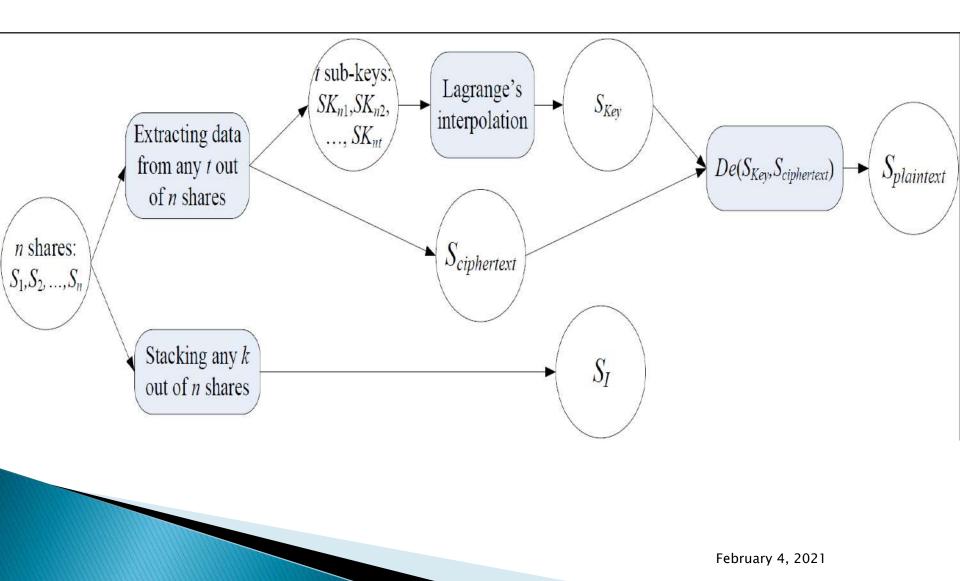
What is a (k, t, n)-ESSVCS?

- k: the VCS threshold
- t: the covert data threshold
- n: the number of participants
- (C₀, C₁) require that any t rows can uniquely determine a share matrix
- Generally, it is required that $t \ge k$

Encoding of ESSVCS



Decoding of ESSVCS



A (2,2,2)–ESSVCS

The sets of share matrices of a (2, 2, 2)-ESSVCS are as follows:

$$C_{0} = \left\{ \begin{bmatrix} 10\\10 \end{bmatrix}, \begin{bmatrix} 01\\01 \end{bmatrix} \right\} \text{ and } C_{1} = \left\{ \begin{bmatrix} 10\\01 \end{bmatrix}, \begin{bmatrix} 01\\10 \end{bmatrix} \right\}$$

- The principle of choosing a share matrix is that: if the random input is 0, we choose the 1st share matrix in C₀ or C₁; if the random input is 1, we choose the 2nd share matrix.
- From another hand, we also can get to know the random input: if the first share matrix is chosen then the random input is 0, and if the second share matrix is chosen then the random input is 1

The procedure of the above (2,2,2)-ESSVCS 01 Sciphertext: 1 ······ 01 2¹³ bits ••• ... Secret image Share 2 Share 1 Share 1+Share 2 *SK*₁:01100..... *SK*₂:10100 ······ 🕹 OK/S 🕇 OK/S 🔁

February 4, 2021

Bandwidth of the ESSVCS

- Bandwidth of the ESSVCS is defined by the maximum amount of covert data it carries.
- Theoretically, the amount of covert data carried by a pixel i is log₂|C_i|
- Denote columns in the basis matrix M_i as c₁,...,c_e and multiplicities of these columns as a₁,..., a_e. The number of share matrices in C_i is:

$$C_i| = \frac{(\sum_{i=1}^e a_i)!}{\prod_{i=1}^e a_i!}$$

 Considering the canonical basis matrices of threshold scheme constructed by Droste, we have the following table:

Bandwidth of a white pixel

k^{n}	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10
3		4!	$\frac{6!}{2!}$	$\frac{8!}{3!}$	$ \frac{10!}{4!} \\ \frac{24!}{6!3!} \\ 30! $	$\frac{12!}{5!}$ 35!	$\frac{14!}{6!}$ 48!	$\frac{16!}{7!}$ 63!	<u>18!</u> <u>8!</u> 80!
4			8!	$\frac{15!}{3!2!}$	$\frac{24!}{6!3!}$	$\frac{35!}{10!4!}$	15!5!	$\frac{63!}{21!6!}$	80! 28!7!
5				16!	$\frac{30!}{3!(2!)^6}$	$\frac{\overline{10!4!}}{\frac{48!}{6!(3!)^7}}$	$\frac{70!}{10!(4!)^8}$	$ \frac{21!6!}{96!} \\ \overline{15!(5!)^9} $	$ \frac{\overline{28!7!}}{126!} \\ \overline{21!(6!)^{10}} $
6					32!	$\frac{\dot{70!}}{4!(2!)^{21}3!}$	$\frac{128!}{10!(3!)^{28}6!}$	$\frac{210!}{20!(4!)^{36}10!}$	$\frac{320!}{35!(5!)^{45}15!}$
7						64!	$\frac{140!}{4!(2!)^{28}(3!)^8}$	$\frac{256!}{10!(3!)^{36}(6!)^9}$	$\frac{420!}{20!(4!)^{45}(10!)^{10}}$
8						0	128!	$\frac{315!}{5!(3!)^{36}(2!)^{36}4!}$	$\frac{640!}{15!(6!)^{45}(3!)^{45}10!}$
9						2		256!	$\frac{630!}{5!(3!)^{45}(2!)^{120}(4!)^{10}}$
10									512!

Table 1: The number of share matrices in C_0

Bandwidth of a black pixel

G	3			S2	80	le la	18 M	2	St
k^{n}	2	3	4	5	6	7	8	9	10
2	2!	3!	4!	5!	6!	7!	8!	9!	10!
3		4!	$\frac{6!}{2!}$	8! 3! 15!	$\frac{10!}{4!}$	$\frac{12!}{5!}$	$\frac{14!}{6!}$	$\frac{16!}{7!}$	<u>18!</u> 8!
4			8!	$\frac{15!}{(2!)^5}$	$(3!)^{6}$	$\frac{\frac{12!}{5!}}{\frac{35!}{(4!)^7}}$	$ \frac{\frac{14!}{6!}}{\frac{48!}{(5!)^8}} $	$\frac{\frac{16!}{7!}}{\frac{63!}{(6!)^9}}$	$ \frac{\frac{18!}{8!}}{80!} \\ \overline{(7!)^{10}} $
5				16!	$\frac{30!}{3!(2!)^6}$	$\frac{48!}{6!(3!)^7}$	$\frac{70!}{10!(4!)^8}$	$\frac{96!}{15!(5!)^9}$	$\frac{126!}{21!(6!)^{10}}$
6					32!	$\frac{70!}{(3!)^7(2!)^7}$	$\frac{128!}{(6!)^8(3!)^8}$	$\frac{210!}{(10!)^9(4!)^9}$	$\frac{320!}{(15!)^{10}(5!)^{10}}$
7						64!	$\frac{140!}{4!(2!)^{28}(3!)^8}$	$\frac{256!}{10!(3!)^{36}(6!)^9}$	$\frac{420!}{20!(4!)^{45}(10!)^{10}}$
8							128!	$\frac{315!}{(4!)^9(2!)^{84}(3!)^9}$	$\frac{640!}{(10!)^{10}(3!)^{120}(6!)^{10}}$
9								256!	$\frac{630!}{5!(3!)^{45}(2!)^{120}(4!)^{10}}$
10							-		512!
1					11 0 5		1 0 1		~

Table 2: The number of share matrices in C_1

Bandwidth of the ESSVCS

• Theorem 4. For a secret image S_1 which consists of n_w white pixels and n_b black pixels, the bandwidth W of the ESSVCS is $W = \lfloor n_w \log_2 |C_0| + n_b \log_2 |C_1| \rfloor$, and it is achieved when using the q_a -pixel encryption model where $q_a = n_w + n_b$.

Comparison of ESSVCS and TiOISSS

	k^n	2	3	4	5	6	7	8	9	10		
	2	2	3	4	5	6	7	8	9	10		
	3		$\frac{4!}{2!2!}$	$\frac{6!}{3!3!}$	$\frac{8!}{4!4!}$	$\frac{10!}{5!5!}$	$\frac{12!}{6!6!}$	$\frac{14!}{7!7!}$	$\frac{16!}{8!8!}$	$\frac{18!}{9!9!}$		
	4			8!	$\frac{15!}{9!6!}$	$\frac{24!}{16!8!}$	$\frac{6!6!}{35!}$ $\frac{25!10!}{25!10!}$	$\frac{48!}{36!12!}$	$\frac{63!}{49!14!}$	$\frac{80!}{64!16!}$		
	5				$\frac{16!}{8!8!}$	$\frac{30!}{15!15!}$	$\frac{48!}{24!24!}$	$\frac{70!}{35!35!}$	$\frac{96!}{48!48!}$	$\frac{126!}{63!63!}$		
	6	35				$\frac{32!}{16!16!}$	$\frac{70!}{40!30!}$	$\frac{128!}{80!48!}$	$\frac{210!}{140!70!}$	$\frac{320!}{224!96!}$		
	7						64! 32!32!	$\frac{140!}{70!70!}$	$\frac{256!}{128!128!}$	$\frac{420!}{210!210!}$		
	8	8						$\frac{128!}{64!64!}$	$\frac{315!}{175!140!}$	$\frac{640!}{384!256!}$		
	9	8							$\frac{256!}{128!128!}$	$\frac{630!}{315!315!}$		
	10									$\frac{512!}{256!256!}$		
able 3: The n	umbe	er o	of sh	nare	mat	rices v	vith di	ifferen	t types		al.'s TiOI	S

Thank you for your attention Any questions?